tf
config
- class flatiron.tf.config.TFAxis(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
axis:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFBaseConfig(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
- class flatiron.tf.config.TFBeta(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
beta_1:
float
-
beta_2:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFClsId(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
class_id:
Optional
[int
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFEpsilon(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
epsilon:
Annotated
[float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFFramework(**data)[source]
Bases:
BaseModel
Configuration for calls to model.compile.
See: https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
- name
Framework name. Default: ‘tensorflow’.
- Type:
str
- device
Hardware device. Default: ‘gpu’.
- Type:
str, optional
- loss_weights
List of loss weights. Default: None.
- Type:
list[float], optional
- weighted_metrics
List of metric weights. Default: None.
- Type:
list[float], optional
- run_eagerly
Leave as False. Default: False.
- Type:
bool, optional
- steps_per_execution
Number of batches per function call. Default: 1.
- Type:
int, optional
- jit_compile
Use XLA. Default: False.
- Type:
bool, optional
- auto_scale_loss
Model dtype is mixed_float16 when True. Default: True.
- Type:
bool, optional
- _abc_impl = <_abc._abc_data object>
-
auto_scale_loss:
bool
-
device:
Annotated
[str
]
-
jit_compile:
bool
-
loss_weights:
Optional
[list
[float
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
-
run_eagerly:
bool
-
steps_per_execution:
Annotated
[int
]
-
weighted_metrics:
Optional
[list
[float
]]
- class flatiron.tf.config.TFIgnoreClass(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
ignore_class:
Optional
[int
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLogits(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
from_logits:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossBaseConfig(**data)[source]
Bases:
TFBaseConfig
- _abc_impl = <_abc._abc_data object>
-
dtype:
Optional
[Annotated
[str
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.tf.config.TFLossBinaryCrossentropy(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
label_smoothing:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossBinaryFocalCrossentropy(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
apply_class_balancing:
bool
-
gamma:
float
-
label_smoothing:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossCategoricalCrossentropy(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
label_smoothing:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossCategoricalFocalCrossentropy(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
gamma:
float
-
label_smoothing:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossCircle(**data)[source]
Bases:
TFLossBaseConfig
- _abc_impl = <_abc._abc_data object>
-
gamma:
float
-
margin:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
remove_diagonal:
bool
- class flatiron.tf.config.TFLossCosineSimilarity(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossDice(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossHuber(**data)[source]
Bases:
TFLossBaseConfig
- _abc_impl = <_abc._abc_data object>
-
delta:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossSparseCategoricalCrossentropy(**data)[source]
Bases:
TFLossBaseConfig
,TFLogits
,TFIgnoreClass
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFLossTversky(**data)[source]
Bases:
TFLossBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
beta:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricAUC(**data)[source]
Bases:
TFMetricBaseConfig
,TFLogits
,TFNumThresh
,TFThresh
- _abc_impl = <_abc._abc_data object>
-
curve:
Annotated
[str
]
-
label_weights:
Optional
[list
[float
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
multi_label:
bool
-
num_labels:
Optional
[int
]
-
summation_method:
Annotated
[str
]
- class flatiron.tf.config.TFMetricAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricBaseConfig(**data)[source]
Bases:
TFBaseConfig
- _abc_impl = <_abc._abc_data object>
-
dtype:
Optional
[Annotated
[str
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricBinaryAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
float
- class flatiron.tf.config.TFMetricBinaryCrossentropy(**data)[source]
Bases:
TFMetricBaseConfig
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
label_smoothing:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricBinaryIoU(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
target_class_ids:
list
[int
]
-
threshold:
float
- class flatiron.tf.config.TFMetricCategoricalAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricCategoricalCrossentropy(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
-
label_smoothing:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricCategoricalHinge(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricConcordanceCorrelation(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricCosineSimilarity(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricF1Score(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
-
average:
Optional
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
Optional
[float
]
- class flatiron.tf.config.TFMetricFBetaScore(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
-
average:
Optional
[str
]
-
beta:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
Optional
[float
]
- class flatiron.tf.config.TFMetricFalseNegatives(**data)[source]
Bases:
TFMetricBaseConfig
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricFalsePositives(**data)[source]
Bases:
TFMetricBaseConfig
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricHinge(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricIoU(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFIgnoreClass
,TFNumClasses
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sparse_y_pred:
bool
-
sparse_y_true:
bool
-
target_class_ids:
list
[int
]
- class flatiron.tf.config.TFMetricKLDivergence(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricLogCoshError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMean(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMeanAbsoluteError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMeanAbsolutePercentageError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMeanIoU(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFIgnoreClass
,TFNumClasses
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sparse_y_pred:
bool
-
sparse_y_true:
bool
- class flatiron.tf.config.TFMetricMeanSquaredError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMeanSquaredLogarithmicError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricMetric(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricOneHotIoU(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFIgnoreClass
,TFNumClasses
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sparse_y_pred:
bool
-
target_class_ids:
list
[int
]
- class flatiron.tf.config.TFMetricOneHotMeanIoU(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFIgnoreClass
,TFNumClasses
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sparse_y_pred:
bool
- class flatiron.tf.config.TFMetricPearsonCorrelation(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricPoisson(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricPrecision(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
top_k:
Optional
[int
]
- class flatiron.tf.config.TFMetricPrecisionAtRecall(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFNumThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
recall:
float
- class flatiron.tf.config.TFMetricR2Score(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
-
class_aggregation:
Optional
[Annotated
[str
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
num_regressors:
Annotated
[int
]
- class flatiron.tf.config.TFMetricRecall(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
top_k:
Optional
[int
]
- class flatiron.tf.config.TFMetricRecallAtPrecision(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFNumThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
precision:
float
- class flatiron.tf.config.TFMetricRootMeanSquaredError(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricSensitivityAtSpecificity(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFNumThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
specificity:
float
- class flatiron.tf.config.TFMetricSparseCategoricalAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricSparseCategoricalCrossentropy(**data)[source]
Bases:
TFMetricBaseConfig
,TFAxis
,TFLogits
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricSparseTopKCategoricalAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
-
from_sorted_ids:
bool
-
k:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricSpecificityAtSensitivity(**data)[source]
Bases:
TFMetricBaseConfig
,TFClsId
,TFNumThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sensitivity:
float
- class flatiron.tf.config.TFMetricSquaredHinge(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricSum(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricTopKCategoricalAccuracy(**data)[source]
Bases:
TFMetricBaseConfig
- _abc_impl = <_abc._abc_data object>
-
k:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricTrueNegatives(**data)[source]
Bases:
TFMetricBaseConfig
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFMetricTruePositives(**data)[source]
Bases:
TFMetricBaseConfig
,TFThresh
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFNumClasses(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
num_classes:
Annotated
[int
]
- class flatiron.tf.config.TFNumThresh(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
num_thresholds:
Annotated
[int
]
- class flatiron.tf.config.TFOptAdadelta(**data)[source]
Bases:
TFOptBaseConfig
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
rho:
float
- class flatiron.tf.config.TFOptAdafactor(**data)[source]
Bases:
TFOptBaseConfig
- _abc_impl = <_abc._abc_data object>
-
beta_2_decay:
float
-
clip_threshold:
float
-
epsilon_1:
Annotated
[float
]
-
epsilon_2:
Annotated
[float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
relative_step:
bool
- class flatiron.tf.config.TFOptAdagrad(**data)[source]
Bases:
TFOptBaseConfig
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
-
initial_accumulator_value:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptAdam(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
-
amsgrad:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptAdamW(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
-
amsgrad:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
weight_decay:
float
- class flatiron.tf.config.TFOptAdamax(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptBaseConfig(**data)[source]
Bases:
TFBaseConfig
- _abc_impl = <_abc._abc_data object>
-
clipnorm:
Optional
[float
]
-
clipvalue:
Optional
[float
]
-
ema_momentum:
Annotated
[float
]
-
ema_overwrite_frequency:
Optional
[Annotated
[int
]]
-
global_clipnorm:
Optional
[float
]
-
gradient_accumulation_steps:
Optional
[Annotated
[int
]]
-
learning_rate:
Optional
[Annotated
[float
]]
-
loss_scale_factor:
Optional
[float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
use_ema:
bool
- class flatiron.tf.config.TFOptFtrl(**data)[source]
Bases:
TFOptBaseConfig
- _abc_impl = <_abc._abc_data object>
-
beta:
float
-
initial_accumulator_value:
float
-
l1_regularization_strength:
float
-
l2_regularization_strength:
float
-
l2_shrinkage_regularization_strength:
float
-
learning_rate_power:
Annotated
[float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptLamb(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptLion(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptNadam(**data)[source]
Bases:
TFOptBaseConfig
,TFBeta
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.tf.config.TFOptRMSprop(**data)[source]
Bases:
TFOptBaseConfig
,TFEpsilon
- _abc_impl = <_abc._abc_data object>
-
centered:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
momentum:
float
-
rho:
float
- class flatiron.tf.config.TFOptSGD(**data)[source]
Bases:
TFOptBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
momentum:
Annotated
[float
]
-
nesterov:
bool
loss
- flatiron.tf.loss.dice_loss(y_true, y_pred, smooth=1)[source]
Dice loss function with smoothing factor to prevent exploding or vanishing gradients.
See: https://cnvrg.io/semantic-segmentation
Equation:
\begin{alignat*}{3} \definecolor{blue2}{rgb}{0.58, 0.71, 0.9} \definecolor{cyan2}{rgb}{0.71, 0.93, 0.95} \definecolor{green2}{rgb}{0.63, 0.82, 0.48} \definecolor{light1}{rgb}{0.64, 0.64, 0.64} \definecolor{red2}{rgb}{0.87, 0.58, 0.56} \color{cyan2} L_{dice}(y, \hat{y}, S) && = 1 - \frac{2 * I + S}{U + S} \end{alignat*}Terms:
\begin{alignat*}{3} intersection & \rightarrow \color{red2} I(y, \hat{y}) && = \sum{|y_i * \hat{y_i}|} \\ union & \rightarrow \color{green2} U(y, \hat{y}) && = \sum{(|y_i| + |\hat{y_i}|)} \\ \text{smoothing factor} & \rightarrow \color{blue2} S && \\ \text{expansion} & \rightarrow \color{cyan2} L_{dice}(y, \hat{y}, S) && = 1 - \frac{ 2 * \color{red2} \sum{|y_i * \hat{y_i}|} \color{white} + \color{blue2} S }{ \color{green2} \sum{(|y_i| + |\hat{y_i}|)} \color{white} + \color{blue2} S } \end{alignat*}- Parameters:
y_true (NDArray or Tensor) – Ground truth labels.
y_pred (NDArray or Tensor) – Predicted labels.
smooth (int, optional) – Smoothing factor. Default: 1.
- Returns:
Loss function.
- Return type:
tf.Tensor
- flatiron.tf.loss.get(config)[source]
Get function from this module.
- Parameters:
config (dict) – Optimizer config.
- Returns:
Module function.
- Return type:
function
- flatiron.tf.loss.jaccard_loss(y_true, y_pred, smooth=100)[source]
Jaccard’s loss is usefull for unbalanced datasets. This has been shifted so it converges on 0 and is smoothed to avoid exploding or disappearing gradients.
See: https://en.wikipedia.org/wiki/Jaccard_index
Equation:
\begin{alignat*}{3} \definecolor{blue2}{rgb}{0.58, 0.71, 0.9} \definecolor{cyan2}{rgb}{0.71, 0.93, 0.95} \definecolor{green2}{rgb}{0.63, 0.82, 0.48} \definecolor{light1}{rgb}{0.64, 0.64, 0.64} \definecolor{red2}{rgb}{0.87, 0.58, 0.56} \color{cyan2} L_{jacc}(y, \hat{y}, S) && = (1 - \frac{I + S}{U - I + S}) S \end{alignat*}Terms:
\begin{alignat*}{3} intersection & \rightarrow \color{red2} I(y, \hat{y}) && = \sum{|y_i * \hat{y_i}|} \\ union & \rightarrow \color{green2} U(y, \hat{y}) && = \sum{(|y_i| + |\hat{y_i}|)} \\ \text{smoothing factor} & \rightarrow \color{blue2} S && \\ \text{expansion} & \rightarrow \color{cyan2} L_{jacc}(y, \hat{y}, S) && = (1 - \frac{ \color{red2} \sum{|y_i * \hat{y_i}|} \color{white} + \color{blue2} S }{ \color{green2} \sum{(|y_i| + |\hat{y_i}|)} \color{white} - \color{red2} \sum{|y_i * \hat{y_i}|} \color{white} + \color{blue2} S }) \color{blue2} S \end{alignat*}- Parameters:
y_true (NDArray or Tensor) – Ground truth labels.
y_pred (NDArray or Tensor) – Predicted labels.
smooth (int, optional) – Smoothing factor. Default: 100.
- Returns:
Loss function.
- Return type:
tf.Tensor
metric
- flatiron.tf.metric.dice(y_true, y_pred, smooth=1.0)[source]
Dice metric.
See: https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
Equation:
\begin{alignat*}{3} \definecolor{blue2}{rgb}{0.58, 0.71, 0.9} \definecolor{cyan2}{rgb}{0.71, 0.93, 0.95} \definecolor{green2}{rgb}{0.63, 0.82, 0.48} \definecolor{light1}{rgb}{0.64, 0.64, 0.64} \definecolor{red2}{rgb}{0.87, 0.58, 0.56} \color{cyan2} Dice(y, \hat{y}) && = \frac{2 * I + S}{U + S} \end{alignat*}Terms:
\begin{alignat*}{3} intersection & \rightarrow \color{red2} I(y, \hat{y}) && = \sum{(y_i * \hat{y_i})} \\ \text{union} & \rightarrow \color{green2} U(y, \hat{y}) && = \sum{(y_i + \hat{y_i})} \\ \text{smoothing factor} & \rightarrow \color{blue2} S \\ \text{expansion} & \rightarrow \color{cyan2} Dice(y, \hat{y}, S) && = \frac{ \color{white} 2 * \color{red2} \sum{(y_i * \hat{y_i})} \color{white} + \color{blue2} S }{ \color{green2} \sum{(y_i + \hat{y_i})} \color{white} + \color{blue2} S } \end{alignat*}- Parameters:
y_true (NDArray or Tensor) – True labels.
y_pred (NDArray or Tensor) – Predicted labels.
smooth (float, optional) – Smoothing factor. Default: 1.0
- Returns:
Dice metric.
- Return type:
tf.Tensor
- flatiron.tf.metric.get(config)[source]
Get function from this module.
- Parameters:
config (dict) – Optimizer config.
- Returns:
Module function.
- Return type:
function
- flatiron.tf.metric.intersection_over_union(y_true, y_pred, smooth=1.0)[source]
Intersection over union metric.
See: https://medium.com/analytics-vidhya/iou-intersection-over-union-705a39e7acef
Equation:
\begin{alignat*}{3} \definecolor{blue2}{rgb}{0.58, 0.71, 0.9} \definecolor{cyan2}{rgb}{0.71, 0.93, 0.95} \definecolor{green2}{rgb}{0.63, 0.82, 0.48} \definecolor{light1}{rgb}{0.64, 0.64, 0.64} \definecolor{red2}{rgb}{0.87, 0.58, 0.56} \color{cyan2} IOU (y, \hat{y}, S) && = \frac{I + S}{U + S} \end{alignat*}Terms:
\begin{alignat*}{3} intersection & \rightarrow \color{red2} I(y, \hat{y}) && = \sum{(y_i * \hat{y_i})} \\ union & \rightarrow \color{green2} U(y, \hat{y}) && = \sum{(y_i + \hat{y_i})} - I(y_i, \hat{y_i}) \\ \text{smoothing factor} & \rightarrow \color{blue2} S \\ \text{expansion} & \rightarrow \color{cyan2} IOU(y, \hat{y}, S) && = \frac{ \color{red2} \sum{(y_i * \hat{y_i})} \color{white} + \color{blue2} S }{ \color{green2} \sum{(y_i + \hat{y_i})} - \sum{(y_i * \hat{y_i})} \color{white} + \color{blue2} S } \end{alignat*}- Parameters:
y_true (NDArray or Tensor) – True labels.
y_pred (NDArray or Tensor) – Predicted labels.
smooth (float, optional) – Smoothing factor. Default: 1.0
- Returns:
IOU metric.
- Return type:
tf.Tensor
- flatiron.tf.metric.jaccard(y_true, y_pred)[source]
Jaccard metric.
See: https://en.wikipedia.org/wiki/Jaccard_index
Equation:
\begin{alignat*}{3} \definecolor{blue2}{rgb}{0.58, 0.71, 0.9} \definecolor{cyan2}{rgb}{0.71, 0.93, 0.95} \definecolor{green2}{rgb}{0.63, 0.82, 0.48} \definecolor{light1}{rgb}{0.64, 0.64, 0.64} \definecolor{red2}{rgb}{0.87, 0.58, 0.56} \color{cyan2} Jacc(y, \hat{y}) && = \frac{1}{N} \sum_{i=0}^{N} \frac{I + 1}{U + 1} \end{alignat*}Terms:
\begin{alignat*}{3} intersection & \rightarrow \color{red2} I(y, \hat{y}) && = \sum{(y_i * \hat{y_i})} \\ union & \rightarrow \color{green2} U(y, \hat{y}) && = \sum{(y_i + \hat{y_i})} - I(y_i, \hat{y_i}) \\ \text{expansion} & \rightarrow \color{cyan2} Jacc(y, \hat{y}) && = \frac{1}{N} \sum_{i=0}^{N} \frac{ \color{red2} \sum{(y_i * \hat{y_i})} \color{white} + 1 }{ \color{green2} \sum{(y_i + \hat{y_i})} - \sum{(y_i * \hat{y_i})} \color{white} + 1 } \end{alignat*}- Parameters:
y_true (NDArray or Tensor) – True labels.
y_pred (NDArray or Tensor) – Predicted labels.
- Returns:
Jaccard metric.
- Return type:
tf.Tensor
optimizer
tools
- flatiron.tf.tools.compile(framework, model, optimizer, loss, metrics)[source]
Call modile.compile on given model with kwargs.
- Parameters:
framework (dict) – Framework dict.
model (Any) – Model to be compiled.
optimizer (dict) – Optimizer settings.
loss (dict) – Loss to be compiled.
metrics (list[dict]) – Metrics function to be compiled.
- Returns:
Dict of compiled objects.
- Return type:
dict
- flatiron.tf.tools.get(config, module, fallback_module)[source]
Given a config and set of modules return an instance or function.
- Parameters:
config (dict) – Instance config.
module (str) – Always __name__.
fallback_module (str) – Fallback module, either a tf or torch module.
- Raises:
EnforceError – If config is not a dict with a name key.
- Returns:
Instance or function.
- Return type:
object
- flatiron.tf.tools.get_callbacks(log_directory, checkpoint_pattern, checkpoint_params={})[source]
Create a list of callbacks for Tensoflow model.
- Parameters:
log_directory (str or Path) – Tensorboard project log directory.
checkpoint_pattern (str) – Filepath pattern for checkpoint callback.
checkpoint_params (dict, optional) – Params to be passed to checkpoint callback. Default: {}.
- Raises:
EnforceError – If log directory does not exist.
EnforeError – If checkpoint pattern does not contain ‘{epoch}’.
- Returns:
dict with Tensorboard and ModelCheckpoint callbacks.
- Return type:
dict
- flatiron.tf.tools.pre_build(device)[source]
Sets hardware device.
- Parameters:
device (str) – Hardware device.
- Return type:
None