torch
config
- class flatiron.torch.config.TAct(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
empty_target_action:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TBeta(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
beta_1:
float
-
beta_2:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TCap(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
capturable:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TCls(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
num_classes:
Optional
[int
]
- class flatiron.torch.config.TDate(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
data_range:
Union
[float
,tuple
[float
,float
],None
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TDecay(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
weight_decay:
float
- class flatiron.torch.config.TDiff(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
differentiable:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TEps(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
epsilon:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TFor(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
foreach:
Optional
[bool
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TGroup1(**data)[source]
Bases:
TCap
,TDecay
,TDiff
,TEps
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TGroup2(**data)[source]
-
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TGroup3(**data)[source]
Bases:
TMarg
,TRed
,TReduct
,TSize
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TInd(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
ignore_index:
Optional
[int
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TMReduct(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.torch.config.TMarg(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
margin:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TMax(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
-
maximize:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TNan(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_strategy:
Union
[float
,Annotated
[str
]]
- class flatiron.torch.config.TNanStrategy(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_strategy:
Annotated
[str
]
- class flatiron.torch.config.TOut(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
num_outputs:
int
- class flatiron.torch.config.TRed(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduce:
Optional
[bool
]
- class flatiron.torch.config.TReduct(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.torch.config.TSize(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
size_average:
Optional
[bool
]
- class flatiron.torch.config.TTopK(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
top_k:
Optional
[int
]
- class flatiron.torch.config.TorchBaseConfig(**data)[source]
Bases:
BaseModel
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
- class flatiron.torch.config.TorchFramework(**data)[source]
Bases:
BaseModel
Configuration for calls to torch train function.
- name
Framework name. Default: ‘torch’.
- Type:
str
- device
Hardware device. Default: ‘cuda’.
- Type:
str, optional
- _abc_impl = <_abc._abc_data object>
-
device:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
name:
str
- class flatiron.torch.config.TorchLossBCELoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossBCEWithLogitsLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossCTCLoss(**data)[source]
Bases:
TorchBaseConfig
,TReduct
- _abc_impl = <_abc._abc_data object>
-
blank:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
zero_infinity:
bool
- class flatiron.torch.config.TorchLossCosineEmbeddingLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup3
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossCrossEntropyLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
-
ignore_index:
int
-
label_smoothing:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossGaussianNLLLoss(**data)[source]
Bases:
TorchBaseConfig
,TEps
,TReduct
- _abc_impl = <_abc._abc_data object>
-
full:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossHingeEmbeddingLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup3
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossHuberLoss(**data)[source]
Bases:
TorchBaseConfig
,TReduct
- _abc_impl = <_abc._abc_data object>
-
delta:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossKLDivLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
-
log_target:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossL1Loss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossMSELoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossMarginRankingLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup3
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossMultiLabelMarginLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossMultiLabelSoftMarginLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossMultiMarginLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup3
- _abc_impl = <_abc._abc_data object>
-
exponent:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossNLLLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
-
ignore_index:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossPairwiseDistance(**data)[source]
Bases:
TorchBaseConfig
,TEps
- _abc_impl = <_abc._abc_data object>
-
keepdim:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
norm_degree:
float
- class flatiron.torch.config.TorchLossPoissonNLLLoss(**data)[source]
Bases:
TorchBaseConfig
,TEps
,TGroup2
- _abc_impl = <_abc._abc_data object>
-
full:
bool
-
log_input:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossSmoothL1Loss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
-
beta:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossSoftMarginLoss(**data)[source]
Bases:
TorchBaseConfig
,TGroup2
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchLossTripletMarginLoss(**data)[source]
Bases:
TorchBaseConfig
,TEps
,TGroup3
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
norm_degree:
float
-
swap:
bool
- class flatiron.torch.config.TorchLossTripletMarginWithDistanceLoss(**data)[source]
Bases:
TorchBaseConfig
,TMarg
,TReduct
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
swap:
bool
- class flatiron.torch.config.TorchMetricBLEUScore(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
n_gram:
int
-
smooth:
bool
-
weights:
Optional
[list
[float
]]
- class flatiron.torch.config.TorchMetricCHRFScore(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
beta:
float
-
lowercase:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
n_char_order:
int
-
n_word_order:
int
-
return_sentence_level_score:
bool
-
whitespace:
bool
- class flatiron.torch.config.TorchMetricCatMetric(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricConcordanceCorrCoef(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricCosineSimilarity(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricCramersV(**data)[source]
Bases:
TorchBaseConfig
,TCls
,TNanStrategy
- _abc_impl = <_abc._abc_data object>
-
bias_correction:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_replace_value:
Optional
[float
]
- class flatiron.torch.config.TorchMetricCriticalSuccessIndex(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
keep_sequence_dim:
Optional
[int
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
threshold:
float
- class flatiron.torch.config.TorchMetricDice(**data)[source]
Bases:
TorchBaseConfig
,TCls
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
-
average:
Optional
[Annotated
[str
]]
-
mdmc_average:
Optional
[Annotated
[str
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
multiclass:
Optional
[bool
]
-
threshold:
float
-
zero_division:
int
- class flatiron.torch.config.TorchMetricErrorRelativeGlobalDimensionlessSynthesis(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
ratio:
float
- class flatiron.torch.config.TorchMetricExplainedVariance(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
multioutput:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricExtendedEditDistance(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
deletion:
float
-
insertion:
float
-
language:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
return_sentence_level_score:
bool
-
rho:
float
- class flatiron.torch.config.TorchMetricFleissKappa(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
mode:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricKLDivergence(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
log_prob:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricKendallRankCorrCoef(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
-
alternative:
Optional
[Annotated
[str
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
t_test:
bool
-
variant:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricLogCoshError(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricMaxMetric(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricMeanAbsoluteError(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricMeanMetric(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricMeanSquaredError(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
squared:
bool
- class flatiron.torch.config.TorchMetricMinMetric(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricMinkowskiDistance(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
p:
float
- class flatiron.torch.config.TorchMetricModifiedPanopticQuality(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
allow_unknown_preds_category:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
stuffs:
list
[int
]
-
things:
list
[int
]
- class flatiron.torch.config.TorchMetricMultiScaleStructuralSimilarityIndexMeasure(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
,TDate
- _abc_impl = <_abc._abc_data object>
-
betas:
tuple
-
gaussian_kernel:
bool
-
k1:
float
-
k2:
float
-
kernel_size:
Union
[int
,list
[int
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
normalize:
Optional
[Annotated
[str
]]
-
sigma:
Union
[float
,list
[float
]]
- class flatiron.torch.config.TorchMetricNormalizedRootMeanSquaredError(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
normalization:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricPanopticQuality(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
allow_unknown_preds_category:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
stuffs:
list
[int
]
-
things:
list
[int
]
- class flatiron.torch.config.TorchMetricPeakSignalNoiseRatio(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
,TDate
- _abc_impl = <_abc._abc_data object>
-
base:
float
-
dim:
Union
[int
,tuple
[int
,...
],None
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricPearsonCorrCoef(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricPearsonsContingencyCoefficient(**data)[source]
Bases:
TorchBaseConfig
,TNanStrategy
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_replace_value:
Optional
[float
]
-
num_classes:
int
- class flatiron.torch.config.TorchMetricPermutationInvariantTraining(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
eval_func:
Annotated
[str
]
-
mode:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricPerplexity(**data)[source]
Bases:
TorchBaseConfig
,TInd
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricR2Score(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
adjusted:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
multioutput:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricRelativeAverageSpectralError(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
window_size:
int
- class flatiron.torch.config.TorchMetricRelativeSquaredError(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
squared:
bool
- class flatiron.torch.config.TorchMetricRetrievalFallOut(**data)[source]
Bases:
TorchBaseConfig
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
-
empty_target_action:
Annotated
[str
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalHitRate(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalMAP(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalMRR(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalNormalizedDCG(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalPrecision(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
-
adaptive_k:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalPrecisionRecallCurve(**data)[source]
Bases:
TorchBaseConfig
,TInd
- _abc_impl = <_abc._abc_data object>
-
adaptive_k:
bool
-
max_k:
Optional
[int
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalRPrecision(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalRecall(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
,TTopK
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRetrievalRecallAtFixedPrecision(**data)[source]
Bases:
TorchBaseConfig
,TAct
,TInd
- _abc_impl = <_abc._abc_data object>
-
adaptive_k:
bool
-
max_k:
Optional
[int
]
-
min_precision:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricRootMeanSquaredErrorUsingSlidingWindow(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
window_size:
int
- class flatiron.torch.config.TorchMetricRunningMean(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
window:
int
- class flatiron.torch.config.TorchMetricRunningSum(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
window:
int
- class flatiron.torch.config.TorchMetricSacreBLEUScore(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
lowercase:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
n_gram:
int
-
smooth:
bool
-
tokenize:
Annotated
[str
]
-
weights:
Optional
[list
[float
]]
- class flatiron.torch.config.TorchMetricScaleInvariantSignalDistortionRatio(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
zero_mean:
bool
- class flatiron.torch.config.TorchMetricSignalDistortionRatio(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
filter_length:
int
-
load_diag:
Optional
[float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
use_cg_iter:
Optional
[int
]
-
zero_mean:
bool
- class flatiron.torch.config.TorchMetricSignalNoiseRatio(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
zero_mean:
bool
- class flatiron.torch.config.TorchMetricSpearmanCorrCoef(**data)[source]
Bases:
TorchBaseConfig
,TOut
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricSpectralAngleMapper(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricSpectralDistortionIndex(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
p:
int
- class flatiron.torch.config.TorchMetricStructuralSimilarityIndexMeasure(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
- _abc_impl = <_abc._abc_data object>
-
data_range:
Union
[float
,tuple
[float
,float
],None
]
-
gaussian_kernel:
bool
-
k1:
float
-
k2:
float
-
kernel_size:
Union
[int
,list
[int
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
return_contrast_sensitivity:
bool
-
return_full_image:
bool
-
sigma:
Union
[float
,list
[float
]]
- class flatiron.torch.config.TorchMetricSumMetric(**data)[source]
Bases:
TorchBaseConfig
,TNan
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchMetricTheilsU(**data)[source]
Bases:
TorchBaseConfig
,TNanStrategy
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_replace_value:
Optional
[float
]
-
num_classes:
int
- class flatiron.torch.config.TorchMetricTotalVariation(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
reduction:
Annotated
[str
]
- class flatiron.torch.config.TorchMetricTranslationEditRate(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
asian_support:
bool
-
lowercase:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
no_punctuation:
bool
-
normalize:
bool
-
return_sentence_level_score:
bool
- class flatiron.torch.config.TorchMetricTschuprowsT(**data)[source]
Bases:
TorchBaseConfig
,TNanStrategy
- _abc_impl = <_abc._abc_data object>
-
bias_correction:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
nan_replace_value:
Optional
[float
]
-
num_classes:
int
- class flatiron.torch.config.TorchMetricTweedieDevianceScore(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
power:
float
- class flatiron.torch.config.TorchMetricUniversalImageQualityIndex(**data)[source]
Bases:
TorchBaseConfig
,TMReduct
- _abc_impl = <_abc._abc_data object>
-
kernel_size:
tuple
[int
,...
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sigma:
tuple
[float
,...
]
- class flatiron.torch.config.TorchOptASGD(**data)[source]
Bases:
TorchOptBaseConfig
,TCap
,TDecay
,TDiff
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
lambd:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
t0:
float
- class flatiron.torch.config.TorchOptAdadelta(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
rho:
float
- class flatiron.torch.config.TorchOptAdafactor(**data)[source]
Bases:
TorchOptBaseConfig
,TDecay
,TEps
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
-
beta2_decay:
float
-
clipping_threshold:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptAdagrad(**data)[source]
Bases:
TorchOptBaseConfig
,TDecay
,TDiff
,TEps
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
-
fused:
Optional
[bool
]
-
initial_accumulator_value:
float
-
lr_decay:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptAdam(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
,TBeta
- _abc_impl = <_abc._abc_data object>
-
amsgrad:
bool
-
fused:
Optional
[bool
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptAdamW(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
,TBeta
- _abc_impl = <_abc._abc_data object>
-
amsgrad:
bool
-
fused:
Optional
[bool
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptAdamax(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
,TBeta
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptBaseConfig(**data)[source]
Bases:
TorchBaseConfig
- _abc_impl = <_abc._abc_data object>
-
learning_rate:
float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptLBFGS(**data)[source]
Bases:
TorchOptBaseConfig
- _abc_impl = <_abc._abc_data object>
-
history_size:
int
-
line_search_fn:
Optional
[str
]
-
max_eval:
Optional
[int
]
-
max_iter:
int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
tolerance_change:
float
-
tolerance_grad:
float
- class flatiron.torch.config.TorchOptNAdam(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
,TBeta
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
momentum_decay:
float
- class flatiron.torch.config.TorchOptRAdam(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
,TBeta
- _abc_impl = <_abc._abc_data object>
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class flatiron.torch.config.TorchOptRMSprop(**data)[source]
Bases:
TorchOptBaseConfig
,TGroup1
- _abc_impl = <_abc._abc_data object>
-
alpha:
float
-
centered:
bool
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
momentum:
float
- class flatiron.torch.config.TorchOptRprop(**data)[source]
Bases:
TorchOptBaseConfig
,TCap
,TDiff
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
-
etas:
tuple
[float
,float
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
step_sizes:
tuple
[float
,float
]
- class flatiron.torch.config.TorchOptSGD(**data)[source]
Bases:
TorchOptBaseConfig
,TDecay
,TDiff
,TFor
,TMax
- _abc_impl = <_abc._abc_data object>
-
dampening:
float
-
fused:
Optional
[bool
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
momentum:
float
-
nesterov:
bool
loss
metric
optimizer
tools
- class flatiron.torch.tools.ModelCheckpoint(filepath, save_freq='epoch', **kwargs)[source]
Bases:
object
Class for saving PyTorch models.
- class flatiron.torch.tools.TorchDataset(info, ext_regex='npy|exr|png|jpeg|jpg|tiff', calc_file_size=True, labels=None, label_axis=-1)[source]
Bases:
Dataset
,Dataset
Class for inheriting torch Dataset into flatiron Dataset.
- static monkey_patch(dataset, channels_first=True)[source]
Construct and monkey patch a new TorchDataset instance from a given Dataset. Pytorch expects images in with the shape (C, H , W) per default.
- Parameters:
dataset (Dataset) – Dataset.
channels_first (bool, optional) – Will convert any matrix of shape (H, W, C) into (C, H, W). Default: True.
- Returns:
TorchDataset instance.
- Return type:
- flatiron.torch.tools._execute_epoch(epoch, model, data_loader, optimizer, loss_func, device, metrics_funcs=[], writer=None, checkpoint=None, mode='train')[source]
Execute train or test epoch on given torch model.
- Parameters:
epoch (int) – Current epoch.
model (torch.nn.Module) – Torch model.
data_loader (torch.utils.data.DataLoader) – Torch data loader.
optimizer (torch.optim.Optimizer) – Torch optimizer.
loss_func (torch.nn.Module) – Torch loss function.
metrics_funcs (list[Callable], optional) – List of torch metrics. Default: [].
writer (SummaryWriter, optional) – Tensorboard writer. Default: None.
checkpoint (ModelCheckpoint, optional) – Model saver. Default: None.
device (torch.device) – Torch device.
mode (str, optional) – Mode to execute. Options: [train, test]. Default: train.
- Return type:
None
- flatiron.torch.tools.compile(framework, model, optimizer, loss, metrics)[source]
Call torch.compile on given model with kwargs.
- Parameters:
framework (dict) – Framework dict.
model (Any) – Model to be compiled.
optimizer (dict) – Optimizer config for compilation.
loss (str) – Loss to be compiled.
metrics (list[str]) – Metrics function to be compiled.
- Returns:
Dict of compiled objects.
- Return type:
dict
- flatiron.torch.tools.get(config, module, fallback_module)[source]
Given a config and set of modules return an instance or function.
- Parameters:
config (dict) – Instance config.
module (str) – Always __name__.
fallback_module (str) – Fallback module, either a tf or torch module.
- Raises:
EnforceError – If config is not a dict with a name key.
- Returns:
Instance or function.
- Return type:
object
- flatiron.torch.tools.get_callbacks(log_directory, checkpoint_pattern, checkpoint_params={})[source]
Create a list of callbacks for Tensoflow model.
- Parameters:
log_directory (str or Path) – Tensorboard project log directory.
checkpoint_pattern (str) – Filepath pattern for checkpoint callback.
checkpoint_params (dict, optional) – Params to be passed to checkpoint callback. Default: {}.
- Raises:
EnforceError – If log directory does not exist.
EnforeError – If checkpoint pattern does not contain ‘{epoch}’.
- Returns:
Tensorboard and ModelCheckpoint callbacks.
- Return type:
list
- flatiron.torch.tools.resolve_config(config)[source]
Resolve configs handed to Torch classes. Replaces the following:
learning_rate
epsilon
clipping_threshold
exponent
norm_degree
beta_1
beta_2
- Parameters:
config (dict) – Config dict.
- Returns:
Resolved config.
- Return type:
dict